giáo án dạy thêm môn toán lớp 12 cơ bản

Đáp án mô đun 02 gvpt - tiểu học môn toán. 1. GIỚI THIỆU MODULE 2. 1. Trả lời câu hỏi. Hãy liệt kê tối đa năm thay đổi Thầy/Cô đã thực hiện đối với việc giảng dạy của mình để hỗ trợ tốt hơn cho việc phát triển các phẩm chất và năng lực của học sinh qua môn Về việc tổ chức dạy học trực tiếp tại các cơ sở giáo dục từ sau Tết Nguyên Đán năm 2022. 25/1/2022 16:8. Về tiếp tục đẩy mạnh công tác thông tin, tuyên truyền phòng, chống dịch bệnh Covid-19. 20/1/2022 12:34. Về chăm lo Tết Nhâm Dần - năm 2022. 14/1/2022 14:16 Thông báo chuyên môn. 15/10/2022 00:21:00 Thông tin các tiết dạy thao giảng tuần 13-Học kỳ 1. 07/10/2022 06:28:00 Thông tin các tiết dạy thao giảng tuần 12-Học kỳ 1. 02/10/2022 08:52:00 Thông tin các tiết dạy thao giảng tuần 11-Học kỳ 1. 26/09/2022 00:34:00 Thông tin các tiết dạy thao giảng Vay Tiền Nhanh Cầm Đồ. Giáo án Toán 12 chuẩn, mớiBỘ GIÁO DỤC VÀ ĐÀO TẠOTài liệuPHÂN PHỐI CHƯƠNG TRÌNH THPTMÔN TOÁN 12Dùng cho các cơ quan quản lí giáo dục và giáo viên,áp dụng từ năm học 2013-2014CHƯƠNG TRÌNH CHUẨNTT LớpHọckìSốtiếtmộthọckìNội dungNộidungtựchọnGhi chúSố tiết theomôn củachương trìnhbắt buộcLíthuyếtBàitậpThựchànhÔntậpKiểmtraXemhướng dẫnchitiếtởphầndưới1 101 54 31 tiết11tiết2 tiết5tiết5 tiếtĐạí số 32 tiếtHìnhhọc22tiết2 51 29 tiết10tiết2 tiết5tiết5 tiếtĐạí số 30 tiếtHìnhhọc21tiết2 111 72 43 tiết14tiết2 tiết8tiết5 tiếtĐS>48 tiếtHìnhhọc24tiết2 51 29 tiết10tiết2 tiết5tiết5 tiếtĐS>30 tiếtHìnhhọc21tiết3 121 72 43 tiết14tiết2 tiết8tiết5 tiếtGíảítích48 tiếtHìnhhọc24tiết2 51 29 tiết10tiết2 tiết5tiết5 tiếtGíảítích30 tiếtHìnhhọc21tiếtCấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mớiLớp 12Cả năm 123 tiếtĐại số và Giải tích 78tiếtHình học 45 tiếtHọc kì I 19 tuần 72tiết48 tiết 24 tiết Học kì II 18 tuần51 tiết30 tiết 21 tiếtTT Nội dung Số tiết Ghi chú1ứng dụng đạo hàm để khảo sát và vẽ đồ thị của hàm sốSự đồng biến, nghịch biến của hàm số . Cựctrị của hàm số. Giá trị lớn nhất và giá trị nhỏnhất của hàm số. Đường tiệm cận đứng,đường tiệm cận ngang của đồ thị hàm sát sự biến thiên và vẽ đồ thị của hàmsố20Đại số 78tiếttrong đócó tiếtôn tập,kiểm tra,trả bài vàtổng ônthi tốtnghiệp2Hàm số luỹ thừa, hàm số mũ và hàm sốlôgaritLuỹ thừa. Hàm số luỹ thừa. Lôgarit. Hàm sốmũ. Hàm số lôgarit. Phương trình mũ vàphương trình lôgarit. Bất phương trình mũ vàlôgarit173Nguyên hàm, Tích phân và ứng dụngNguyên hàm. Tích phân. ứng dụng của tíchphân trong hình học. 164Số phứcSố phức. Cộng, trừ và nhân số phức. Phépchia số phức. Phương trình bậc hai với hệ sốthực95Khối đa diệnKhái niệm về khối đa diện. Khối đa diện lồivà khối đa diện đều. Khái niệm về thể tíchcủa khối đa diện11 Hình học45 tiếtCấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mớiTT Nội dung Số tiết Ghi chútrong đócó tiếtôn tập,kiểm tra,trả bài vàtổng ônthi tốtnghiệp6Mặt nón, mặt trụ, mặt cầuKhái niệm về mặt tròn xoay. Mặt cầu107Phương pháp toạ độ trong không gianHệ toạ độ trong không gian. Phương trìnhmặt phẳng. Phương trình đường thẳng trongkhông soạn Chương I ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢOSÁT VÀ VẼ ĐỒ THỊ HÀM SỐTiết dạy 01 Bài 1 SỰ ĐỒNG BIẾN, NGHỊCH BIẾNCỦA HÀM SỐI. MỤC TIÊUKiến thức − Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mốiliên hệ giữa khái niệm này với đạo hàm.− Nắm được qui tắc xét tính đơn điệu của hàm năng − Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạohàm của độ − Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học mộtcách lôgic và hệ CHUẨN BỊGiáo viên Giáo án. Hình vẽ minh sinh SGK, vở ghi. Ôn tập các kiến thức đã học về đạo hàm ở HOẠT ĐỘNG DẠY HỌC1. Ổn định tổ chức Kiểm tra sĩ số Kiểm tra bài cũ 5'H. Tính đạo hàm của các hàm số a22xy = −, b1yx=. Xét dấu đạohàm của các hàm số đó?Cấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mớiĐ. a y x' = −b 21yx' = −.3. Giảng bài mớiTL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung10'Hoạt động 1 Nhắc lại các kiến thức liên quan tới tính đơn điệu của hàm sốCấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mới• Dựa vào KTBC, cho HSnhận xét dựa vào đồ thịcủa các hàm Hãy chỉ ra các khoảngđồng biến, nghịch biến củacác hàm số đã cho?H2. Nhắc lại định nghĩatính đơn điệu của hàm số?H3. Nhắc lại phương phápxét tính đơn điệu của hàmsố đã biết?H4. Nhận xét mối liên hệgiữa đồ thị của hàm số vàtính đơn điệu của hàm số?• GV hướng dẫn HS nêunhận xét về đồ thị của -6 -4 -2 2 4 6 8-55xyĐ1. 22xy = − đồng biến trên –∞; 0, nghịch biến trên 0;+∞1yx= nghịch biến trên –∞; 0, 0; +∞Đ4. y′ > 0 ⇒ HS đồng biếny′ −f x f xx x,∀x1,x2∈ K x1 ≠ x2• y = fx nghịch biến trênK ⇔ ∀x1, x2 ∈ K x1 fx2 ⇔ 1 21 2 0− 0, x K∀ ∈thì y = fx đồng biến trênK.• Nếu f 'x 0, ∀xb y′ = 2x – 2VD1 Tìm các khoảng đơnđiệu của hàm sốa 2 1y x= −b 22y x x= −5' Hoạt động 4 Củng cốNhấn mạnh– Mối liên quan giữa đạohàm và tính đơn điệu củahàm Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mới4. BÀI TẬP VỀ NHÀ− Bài 1, 2 SGK.− Đọc tiếp bài "Sự đồng biến, nghịch biến của hàm số".IV. RÚT KINH NGHIỆM, BỔ SUNG Ngày soạn Chương I ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐTiết dạy 02 Bài 1 SỰ ĐỒNG BIẾN, NGHỊCH BIẾNCỦA HÀM SỐ ttI. MỤC TIÊUKiến thức − Hiểu định nghĩa của sự đồng biến, nghịch biến của hàm số và mốiliên hệ giữa khái niệm này với đạo hàm.− Nắm được qui tắc xét tính đơn điệu của hàm năng − Biết vận dụng qui tắc xét tính đơn điệu của một hàm số và dấu đạohàm của độ − Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học mộtcách lôgic và hệ CHUẨN BỊGiáo viên Giáo án. Hình vẽ minh sinh SGK, vở ghi. Ôn tập các kiến thức đã học về đạo hàm ở HOẠT ĐỘNG DẠY HỌC1. Ổn định tổ chức Kiểm tra sĩ số Kiểm tra bài cũ 5'H. Tìm các khoảng đơn điệu của hàm số 42 1y x= +?Đ. Hàm số đồng biến trong khoảng 0; +∞, nghịch biến trongkhoảng –∞; 0.3. Giảng bài mớiTL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung10'Hoạt động 1 Tìm hiểu thêm về mối liên hệ giữa đạo hàm và tính đơn điệu củahàm số• GV nêu định lí mở rộngI. Tính đơn điệu của hàmsốCấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mớivà giải thích thông Tính đơn điệu và dấucủa đạo hàmChú ý Giả sử y = fx có đạohàm trên K. Nếu f ′x ≥ 0f′x ≤ 0, ∀x ∈ K và f′x= 0 chỉ tại một số hữu hạnđiểm thì hàm số đồng biếnnghịch biến trên Tìm các khoảng đơnđiệu của hàm số y = Hoạt động 2 Tìm hiểu qui tắc xét tính đơn điệu của hàm số• GV hướng dẫn rút ra quitắc xét tính đơn điệu củahàm Qui tắc xét tính đơnđiệu của hàm số1. Qui tắc1 Tìm tập xác Tính f′x. Tìm các điểmxi i = 1, 2, …, n mà tạiđó đạo hàm bằng 0 hoặckhông xác Săpx xếp các điểm xitheo thứ tự tăng dần vàlập bảng biến Nêu kết luận về cáckhoảng đồng biến, nghịchbiến của hàm động 3 Áp dụng xét tính đơn điệu của hàm số• Chia nhóm thực hiện vàgọi HS lên bảng.• Các nhóm thực hiện đồng biến –∞; –1, 2;+∞nghịch biến –1; 2b đồng biến –∞; –1, –1;2. Áp dụngVD3 Tìm các khoảng đơnđiệu của các hàm số saua 3 21 12 23 2y x x x= − − +Cấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mới• GV hướng dẫn xét hàmsốtrên 02;π ÷ .H1. Tính f′x ?+∞Đ1. f′x = 1 – cosx ≥ 0f′x = 0 ⇔ x = 0⇒ center;margin-top 10px; height 280px;"> ÷ b ĐB 203;  ÷ , NB 0;−∞, 23; +∞ ÷ c ĐB 1 0;−, 1;+∞NB 1;−∞ −, 0 1;d ĐB 1 1; , ;−∞ +∞e NB 1 1; , ;−∞ +∞f ĐB 5 ; +∞, NB 4 ; −∞a 24 3y x x= + −b 3 25y x x= − + −c 4 22 3y x x= − +d 3 11xyx+=−e 221x xyx−=−f 220y x x= − −7' Hoạt động 2 Xét tính đơn điệu của hàm số trên một khoảngH1. Nêu các bước xét tínhđơn điệu của hàm số?Đ1. a D = R 22211xyx'−=+y′ = 0 ⇔ x = ± 1b D = [0; 2]212xyx x'−=−y′ = 0 ⇔ x = 12. Chứng minh hàm sốđồng biến, nghịch biếntrên khoảng được chỉ raa 21xyx=+, ĐB 1 1 ; −, NB 1 1 ; , ; −∞ − +∞b 22y x x= −, ĐB 0 1 ; ,NB 1 2 ; 15'Hoạt động 3 Vận dụng tính đơn điệu của hàm số• GV hướng dẫn cách vậndụng tính đơn điệu đểchứng minh bất đẳng thức.– Xác lập hàm số.– Xét tính đơn điệu củahàm số trên miền thíchhợp.•a tan , 0;2π = − ∈÷ y x x tan 0, 0;2π = ≥ ∀ ∈÷ y x xy′ = 0 ⇔ x = 0⇒ y đồng biến trên 0;2π ÷ ⇒ y′x > y′0 với02π + y′0 với02π 0, fx 0, fx > fx0, ∀x ∈Sx0, h\ {x0}.Chú ýa Điểm cực trị của hàmsố; Giá trị cực trị của hàmsố; Điểm cực trị của đồ thịhàm Nếu y = fx có đạohàm trên a; b và đạt cựctrị tại x0 ∈ a; b thì f′x0= động 2 Tìm hiểu điều kiện đủ để hàm số có cực trị• GV phác hoạ đồ thị củacác hàm số a 2 1= − +y x b 2 33= −xy xTừ đó cho HS nhận xétmối liên hệ giữa dấu củađạo hàm và sự tồn tại cựctrị của hàm số.• a không có cực có CĐ, ĐIỀU KIỆN ĐỦ ĐỂHÀM SỐ CÓ CỰC TRỊĐịnh lí 1 Giả sử hàm số y= fx liên tục trên khoảngK = 0 0 ; − +x h x h và cóđạo hàm trên K hoặc K \{x0} h > 0.a f′x > 0 trên 0 0 ; −x h x,f′x 0 trên 0 0 ; +x x h thìx0 là một điểm CT của fx.Nhận xét Hàm số có thểđạt cực trị tại những điểmmà tại đó đạo hàm khôngxác động 3 Áp dụng tìm điểm cực trị của hàm số• GV hướng dẫn các bướcthực – Tìm tập xác định.– Tìm y′.– Tìm điểm mà y′ = 0 hoặckhông tồn tại.– Lập bảng biến thiên.– Dựa vào bảng biến thiênđể kết D = Ry′ = –2x; y′ = 0 ⇔ x = 0Điểm CĐ 0; 1b D = Ry′ = 23 2 1− −x x; y′ = 0 ⇔ 113== −xxĐiểm CĐ 1 86;3 27 − ÷ ,Điểm CT 1;2c D = R \ {–1}22' 0, 1 1= > ∀ ≠ −+y xx⇒ Hàm số không có Tìm các điểm cực trịcủa hàm sôa 2 1= = − +y f x xb 3 2 3= = − − +y f x x x xc 3 1 1+= =+xy f xx5' Hoạt động 4 Củng cốNhấn mạnh– Khái niệm cực trị củahàm số.– Điều kiện cần và điềukiện đủ để hàm số có Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mới4. BÀI TẬP VỀ NHÀ− Làm bài tập 1, 3 SGK.− Đọc tiếp bài "Cực trị của hàm số".IV. RÚT KINH NGHIỆM, BỔ SUNG Ngày soạn Chương I ỨNG DỤNG ĐẠO HÀM ĐỂ KHẢO SÁT VÀ VẼ ĐỒ THỊ HÀM SỐTiết dạy 05 Bài 2 CỰC TRỊ CỦA HÀM SỐ ttI. MỤC TIÊUKiến thức − Mô tả được các khái niệm điểm cực đại, điểm cực tiểu, điểm cực trịcủa hàm số.− Mô tả được các điều kiện đủ để hàm số có điểm cực năng − Sử dụng thành thạo các điều kiện đủ để tìm cực độ − Rèn luyện tính cẩn thận, chính xác. Tư duy các vấn đề toán học mộtcách lôgic và hệ CHUẨN BỊGiáo viên Giáo án. Hình vẽ minh sinh SGK, vở ghi. Ôn tập các kiến thức đã học về tính đơn điệuvà cực trị của hàm HOẠT ĐỘNG DẠY HỌC1. Ổn định tổ chức Kiểm tra sĩ số Kiểm tra bài cũ 3'H. Tìm điểm cực trị của hàm số 33 1= − +y x x?Đ. Điểm CĐ –1; 3; Điểm CT 1; –1.3. Giảng bài mớiTL Hoạt động của Giáo viên Hoạt động của Học sinh Nội dung5' Hoạt động 1 Tìm hiểu Qui tắc tìm cực trị của hàm số• Dựa vào KTBC, GV choHS nhận xét, nêu lên quitắc tìm cực trị của hàm số.• HS nêu qui QUI TẮC TÌM CỰCTRỊQui tắc 11 Tìm tập xác Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mới2 Tính f′x. Tìm các điểmtại đó f′x = 0 hoặc f′xkhông xác Lập bảng biến Từ bảng biến thiên suyra các điểm cực động 2 Áp dụng qui tắc 1 tìm cực trị của hàm số• Cho các nhóm thực hiện. • Các nhóm thảo luận vàtrình CĐ –1; 3; CT 1; –1.b CĐ 0; 2; CT 3 1;2 4 − − ÷ , 3 1;2 4 − ÷ c Không có cực trịd CĐ –2; –3; CT 0; 1VD1 Tìm các điểm cực trịcủa hàm sốa 2 3= −y x xb 4 23 2= − +y x xc 11−=+xyxd 211+ +=+x xyx5' Hoạt động 3 Tìm hiểu qui tắc 2 để tìm cực trị của hàm số• GV nêu định lí 2 và Dựa vào định lí 2, hãynêu qui tắc 2 để tìm cực trịcủa hàm số?Đ1. HS phát lí 2Giả sử y = fx có đạohàm cấp 2 trong0 0 ; − +x h x h h > 0. a Nếu f′x0 = 0, f′′x0 >0 thì x0 là điểm cực Nếu f′x0 = 0, f′′x0 <0 thì x0 là điểm cực tắc 21 Tìm tập xác Tính f′x. Giải phươngtrình f′x = 0 và kí hiệu xilà nghiệm3 Tìm f′′x và tính f′′xi.4 Dựa vào dấu của f′′xisuy ra tính chất cực trịCấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mớicủa động 4 Áp dụng qui tắc 2 để tìm cực trị của hàm số• Cho các nhóm thực hiện. • Các nhóm thảo luận vàtrình CĐ 0; 6 CT –2; 2, 2; 2b CĐ 4ππ= +x k CT 34ππ= +x kVD2 Tìm cực trị của hàmsốa 422 64= − +xy xb sin 2=y x5' Hoạt động 5 Củng cốNhấn mạnh– Các qui tắc để tìm cực trịcủa hàm số.– Nhận xét qui tắc nêndùng ứng với từng loạihàm hỏi Đối với các hàmsố sau hãy chọn phươngán đúng1 Chỉ có Chỉ có Không có cực Có CĐ và 3 25 3= + − +y x x xb 3 25 3= − + − +y x x xc 242− +=−x xyxd 42−=−xyxa Có CĐ và CTb Không có CĐ và CTc Có CĐ và CTd Không có CĐ và CT• Đối với các hàm đa thứcbậc cao, hàm lượng giác,… nên dùng qui tắc 2.• Đối với các hàm khôngcó đạo hàm không thể sửdụng qui tắc BÀI TẬP VỀ NHÀ− Làm bài tập 2, 4, 5, 6 RÚT KINH NGHIỆM, BỔ SUNGCấn Văn Thắm – Hà NộiGiáo án Toán 12 chuẩn, mớiCấn Văn Thắm – Hà Nội Giáo án Toán 12 cơ bản, soạn đẹp, không cần chỉnh sửa, file word giao an toan lop 12 hinh hoc va giai tich Trước đây tôi đã giới thiệu nhiều bộ giáo án Toán trong đó có bộ Giáo án Toán 12 cơ bản. Tuy nhiên bản đó, bạn cần phải chỉnh sửa mới có thể in ra được. Bài này giới thiệu bộ giáo án môn Toán lớp 12 chương trình chuẩn bản đẹp nhất trên mạng. Bộ giáo án này được biên soạn công phu, bạn không cần phải chỉnh sửa gì cũng có thể in ra rất đẹp làm tư liệu cho bản thân. 1. Download Giáo án Giải tích 12 chương trình chuẩn cơ bản cả năm DOWNLOAD 2. Download Giáo án Hình học 12 chương trình chuẩn cơ bản cả năm DOWNLOAD Xem thêm Giáo án Toán 10 soạn đẹp Giáo án Toán 11 soạn đẹp Giáo Án - Bài Giảng Giáo án lớp 12 Giáo án Toán lớp 12 Toán lớp 12 Soạn giáo án Toán 12

giáo án dạy thêm môn toán lớp 12 cơ bản